CHAPTER 1 RATIONAL NUMBERS

Question 1.

Using appropriate properties find:

$$\begin{aligned} (i) &-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6} \\ (ii) &\frac{2}{5} \times \left(\frac{-3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5} \\ \\ \text{Solution:} \\ (i) \text{ We have } &-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6} \\ &= \frac{-2}{3} \times \frac{3}{5} - \frac{3}{5} \times \frac{1}{6} + \frac{5}{2} \quad \text{(By regrouping)} \\ &= \frac{3}{5} \times \left(\frac{-2}{3} - \frac{1}{6}\right) + \frac{5}{2} \\ &\quad \text{(Using distributive property)} \\ &= \frac{3}{5} \times \left(\frac{-2 \times 2}{3 \times 2} - \frac{1 \times 1}{6 \times 1}\right) + \frac{5}{2} \\ &= \frac{3}{5} \times \left(\frac{-4}{6} - \frac{1}{6}\right) + \frac{5}{2} = \frac{3}{5} \times \left(\frac{-4 - 1}{6}\right) + \frac{5}{2} \\ &= \frac{3}{5} \times \left(\frac{-5}{6}\right) + \frac{5}{2} \end{aligned}$$

$$= -\frac{1}{2} + \frac{5}{2} = \left(\frac{-1+5}{2}\right) = \frac{4}{2} = 2.$$
$$\left[\because \frac{\cancel{\beta}^1}{\cancel{\beta}_1} \times \frac{-\cancel{\beta}^1}{\cancel{\beta}_2} = \frac{-1}{2}\right]$$

Thus, the required value = 2.

(*ii*) We have $\frac{2}{5} \times \left(\frac{-3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$ $= \frac{2}{5} \times \left(\frac{-3}{7}\right) + \frac{1}{14} \times \frac{2}{5} - \frac{1}{6} \times \frac{3}{2}$ [By regrouping] $= \frac{2}{5} \times \left[\frac{-3}{7} + \frac{1}{14}\right] - \frac{1}{6} \times \frac{3}{2}$ [Using distributive property] $= \frac{2}{5} \times \left[\frac{-3 \times 2}{7 \times 2} + \frac{1 \times 1}{14 \times 1}\right] - \frac{1}{6} \times \frac{3}{2}$ $= \frac{2}{5} \times \left[\frac{-6}{14} + \frac{1}{14}\right] - \frac{1}{6} \times \frac{3}{2}$ $= \frac{2}{5} \times \left[\frac{-5}{14} - \frac{1}{4}\right]$ $\left[\because \frac{1}{\beta_2} \times \frac{\beta^1}{2} = \frac{1}{4}\right]$ $= -\frac{1}{7} - \frac{1}{4}$ $\left[\because \frac{2}{\beta} \times \frac{-\beta^1}{14\gamma} = \frac{-1}{7}\right]$

$$= \frac{-1 \times 4}{7 \times 4} - \frac{1 \times 7}{4 \times 7} = \frac{-4}{28} - \frac{7}{28} = \frac{-4 - 7}{28} = \frac{-11}{28}$$

Thus, the required value = $\frac{-11}{28}$.

Question 2.

Write the additive inverse of each of the following: (i) 2/8 (ii) -5/9 (iii) -6/-5

(iv) 2/-9

(v) 19/-6

(i) Additive inverse of
$$\frac{2}{8} = \frac{-2}{8}$$

[:: $a + (-a) = 0$]
(ii) Additive inverse of $\frac{-5}{9} = -\left(\frac{-5}{9}\right) = \frac{5}{9}$
(iii) $\frac{-6}{-5} = \frac{6}{5}$
.: Additive inverse of $\frac{6}{5} = \frac{-6}{5}$
(iv) Standard form of $\frac{2}{-9} = \frac{-2}{9}$
.: Additive inverse of $\frac{-2}{9} = \frac{2}{9}$
(v) Standard form of $\frac{19}{-6} = \frac{-19}{6}$
.: Additive inverse of $\frac{-19}{6} = \frac{19}{6}$

Question 3. Verify that -(-x) = x for (i) x = 11/5(ii) x = -13/17

(i) We have
$$x = \frac{11}{15}$$

 $\therefore -x = \frac{-11}{15}$
 $-(-x) = -\left(\frac{-11}{15}\right) = \frac{11}{15} = x$ (verified)
 $[\because (-) \times (-) = (+)]$
(ii) We have $x = -\frac{13}{17}$
 $\therefore -x = -\left(\frac{-13}{17}\right) = \frac{13}{17}$ $[\because (-) \times (-) = (+)]$
 $-(-x) = \frac{-13}{17} = x$ (verified)

Question 4.

Find the multiplicative inverse of the following: -13

(i) -13
(ii)
$$\frac{-13}{19}$$

(iii) $\frac{1}{5}$
(iv) $\frac{-5}{8} \times \frac{-3}{7}$
(v) $-1 \times \frac{-2}{5}$
(vi) -1

We know that multiplicative inverse of a is $\frac{1}{a}$.

$$\left[\because a \times \frac{1}{a} = 1\right]$$

(i) Multiplicative inverse of

$$-13 = \frac{-1}{13} \qquad \qquad \left[\because -13 \times \frac{-1}{13} = 1 \right]$$

(ii) Multiplicative inverse of

$$\frac{-13}{19} = \frac{-19}{13} \qquad \qquad \left[\because \frac{-13}{19} \times \frac{-19}{13} = 1 \right]$$

(iii) Multiplicative inverse of $\frac{1}{5} = 5$

$$\left[\because \frac{1}{5} \times 5 = 1\right]$$

(iv) Multiplicative inverse of

 $\frac{-5}{8} \times \frac{-3}{7} = \frac{-8}{5} \times \frac{-7}{3} = \frac{56}{15}$ Alternatively; $\frac{-5}{8} \times \frac{-3}{7} = \frac{15}{56}$ \therefore Multiplicative inverse of $\frac{15}{56} = \frac{56}{15} \qquad \left[\because \frac{15}{56} \times \frac{56}{15} = 1 \right]$ $(v) -1 \times \frac{-2}{5} = \frac{2}{5}$ \therefore Multiplicative inverse of $\frac{2}{5} = \frac{5}{2}$ $\left[\because \frac{2}{5} \times \frac{5}{2} = 1 \right]$ (vi) Multiplicative inverse of $-1 = \frac{1}{-1} = -1$ $\left[\because -1 \times \frac{1}{-1} = 1 \right]$

Question 5.

Name the property under multiplication used in each of the following:

(*i*)
$$\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = \frac{-4}{5}$$

(*ii*) $\frac{-13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$

(*iii*)
$$\frac{-19}{29} \times \frac{29}{-19} = 1$$

Solution:

(i) Commutative property of multiplication(ii) Commutative property of multiplication

(iii) Multiplicative inverse property

Question 6.

Multiply 6/13 by the reciprocal of -7/16.

Reciprocal of
$$\frac{-7}{16} = \frac{16}{-7} = \frac{-16}{7}$$

 $\therefore \frac{6}{13} \times \frac{-16}{7} = \frac{6 \times (-16)}{13 \times 7} = \frac{-96}{91}$

Question 7.

Tell what property allows you to compute

$$\frac{1}{3} \times \left(6 \times \frac{4}{3}\right) \operatorname{as}\left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$$

Solution:

Since $a \times (b \times c) = (a \times b) \times c$ shows the associative property of multiplications.

$$\therefore \frac{1}{3} \times \left(6 \times \frac{4}{3} \right) = \left(\frac{1}{3} \times 6 \right) \times \frac{4}{3} \text{ shows the associative}$$

property of multiplication.

Question 8.

Is 8/9 the multiplicative inverse of -11/8? Why or Why not? Solution: Here -11/8 = -9/8.

Since multiplicative inverse of 8/9 is 9/8 but not -9/8 89 is not the multiplicative inverse of -11/8

Question 9.

If 0.3 the multiplicative inverse of 31/3? Why or why not? **Solution:**

Here
$$3\frac{1}{3} = \frac{10}{3}$$
 and $0.3 = \frac{3}{10}$
Also, $\frac{10}{3} \times \frac{3}{10} = 1$

Multiplicative inverse of 0.3 or 3/10 is 10/3. Thus, 0.3 is the multiplicative inverse of 31/3.

Question 10.

Write:

(i) The rational number that does not have a reciprocal.

- (ii) The rational numbers that are equal to their reciprocals.
- (iii) The rational number that is equal to its negative.

(i) 0 is the rational number which does not have its reciprocal
[: 1/0 is not defined]
(ii) Reciprocal of 1 = 1/1 = 1
Reciprocal of -1 = 1/-1 = -1
Thus, 1 and -1 are the required rational numbers.

(iii) 0 is the rational number which is equal to its negative.