CHAPTER 12 CONGRUENCY

Question 1.

In the given figure, name

(a) the side opposite to vertex A

(b) the vertex opposite A to side AB

- (c) the angle opposite to side AC
- (d) the angle made by the sides CB and CA.

Solution:

(a) The side opposite to vertex A is BC.

- (b) The vertex opposite to side AB is C.
- (c) The angle opposite to side AB is \angle ACB.
- (d) The angle made by the sides CB and CA is $\angle ACB$.

Question 2.

Examine whether the given triangles are congruent or not. **Solution:**

Here,

AB = DE = 3 cm

BC = DF = 3.5 cm

AC = EF = 4.5 cm

 $\triangle ABC = \triangle EDF$ (By SSS rule)

So, $\triangle ABC$ and $\triangle EDF$ are congruent.

Question 3.

In the given congruent triangles under ASA, find the value of x and y, $\Delta PQR = \Delta STU$.

Solution:

Given: $\triangle PQR = \triangle STU$ (By ASA rule) $\angle Q = \angle T = 60^{\circ}$ (given) $QR^{-} = TU^{-} = 4 \text{ cm}$ (given) $\angle x = 30^{\circ}$ (for ASA rule) Now in $\triangle STU$, $\angle S + \angle T + \angle U = 180^{\circ}$ (Angle sum property) $\angle y + 60^{\circ} + \angle x = 180^{\circ}$ $\angle y + 60^{\circ} + 30^{\circ} = 180^{\circ}$ $\angle y + 90^{\circ} = 180^{\circ}$ $\angle y = 180^{\circ} - 90^{\circ} = 90^{\circ}$ Hence, x = 30° and y = 90°.

Question 4.

In the following figure, show that $\triangle PSQ = \triangle PSR$.

Solution:

In $\triangle PSQ$ and $\triangle PSR$ $PQ^{-} = PR^{-} = 6.5 \text{ cm (Given)}$ $PS^{-} = PS^{-} (Common)$ $\angle PSQ = \angle PSR = 90^{\circ} (Given)$ $\triangle PSQ = \triangle PSR (By RHS rule)$

Question 5.

Can two equilateral triangles always be congruent? Give reasons. **Solution:**

No, any two equilateral triangles are not always congruent.

Reason: Each angle of an equilateral triangle is 60° but their corresponding sides cannot always be the same.

Question 6.

In the given figure, AP = BQ, PR = QS. Show that $\triangle APS = \triangle BQR$

Solution: In $\triangle APS$ and $\triangle BQR$ AP = BQ (Given) PR = QS (Given) PR + RS = QS + RS (Adding RS to both sides) PS = QR $\angle APS = \angle BQR = 90^{\circ}$ (Given) $\triangle APS = \triangle BQR$ (by SAS rule)

Question 7.

Without drawing the figures of the triangles, write all six pairs of equal measures in each of the following pairs of congruent triangles.

```
(i) \triangle ABC = ADEF

(ii) \triangle XYZ = \triangle MLN

Solution:

(i) Given: \triangle ABC = \triangle DEF

Here AB = DE

BC = EF

AC = DF

\angle A = \angle D, \angle B = \angle E and \angle C = \angle F

(ii) Given \triangle XYZ = \triangle MLN

Here XY = ML

YZ = LN

XZ = MN

\angle X = \angle M, \angle Y = \angle L and \angle Z = \angle N
```

Question 8.

Lengths of two sides of an isosceles triangle are 5 cm and 8 cm, find the perimeter of the triangle.

Solution:

Since the lengths of any two sides of an isosceles triangle are equal, then Case I: The three sides of the triangle are 5 cm, 5 cm and 8 cm.