Page 39 - SM inner class 7.cdr
P. 39

7                                               9     -9                          -13
             rational number  . In general for any non-zero Likewise,              or    is the reciprocal of        ,
                               3                                             - 13    13                           9
                                 p                                      -105                       113     -113
             rational number       we have another     non-zero and           is the reciprocal of       or      . We
                                q                                        113                      - 105     105
                                q                                                              q
             rational number      . This number is called the     observe from here that if       is the reciprocal of
                                p                                                               p
                           p                7                      p       p                      q
             reciprocal of  . The number   is the reciprocal        , then  , is the reciprocal of  . In other words,
                           q                3                     q        q                      p
                3                                                  p      q
             of  .                                                   and   are reciprocals of each other.
                7                                                 q       p


               E       xercise 4.2



               1. Find the ad di tive in verse and multi pli ca tive in verse of the fol low ing ra tio nal numbers.
                                                                                          1                 -2
                 (a) -7                   (b) 23                 (c) -11               (d)             (e)
                                                                                          3                 7
                                                                     -6                    1               18
                 (f) 6                    (g) 1                  (h)                   (i)             (j)
                                                                     13                   100              27
                        99                   102
                 (k) -                    (l)
                       100                   117
               2. Sim plify the fol low ing.
                      1   æ  5ö                 99    77             3   4                1    3
                 (a)    - - ÷             (b) -    +             (c)   +               (d)  -
                          ç
                      8   è  8 ø               100   100             4   3                5   20
                         æ  49ö                  11                  1    æ  - 5ö  10     13   10    4
                 (e) 1 + -     ÷          (f) 1 +                (g)    + ç   ÷ +      (h)   -    +
                         ç
                         è  50 ø                100                  11   è 11 ø  11      23   23   23
                      æ 1 ö   æ 1  ö  9      1   1 15                  3  5   æ 17 ö       1   11   æ  22ö
                 (i)  ç - ÷ + - ÷ +       (j)  +   -             (k) - - - -       ÷   (l)   +    + -     ÷
                              ç
                                                                                                    ç
                                                                              ç
                      è 2 ø   è 5 ø  10      8   9 18                  4  6   è  8  ø     11   10   è   5 ø
               3. Sim plify:
                      8   3                  50    7                 121 11               5   35
                 (a)    ´                 (b)   ´                (c)     ¸             (d)  ¸
                      9   4                  51 10                   169 13               7   40
                      æ 15 ö 14              111   222               3   4 16             8   2 15
                 (e) ç -   ÷ ´            (f)    ¸               (g)   ¸ ´             (h)  ¸ ´
                      è 28 ø   30            100   300               2   9  81            9   3   28
                       8    16               1   æ  2ö æ  - 100ö       1    æ   1 ö        -1   3  æ  -51 ö
                 (i)      ¸               (j)  ´ - ÷ ´ ç       ÷ (k)      ¸ -     ÷    (l)    ´ ¸ ç     ÷
                                                                            ç
                                                 ç
                      125   75               5   è  5 ø è  32 ø      1000   è  100 ø       2    5  è 40  ø
             Properties of Rational Numbers                       Consider that    p  and  r  are any two rational
             The rational numbers also obey commutative,                           q       s
             associative and distributive properties        like  numbers, then     according  to the commutative
             whole numbers, fractions, integers, etc. Let us      property of addition, we have.
             verify it with examples.                                                p   r   r    p
                                                                                       +   =   +
             1. Commutative Property                                                 q   s   s   q
             (i)  Com mu ta tive  prop erty  of  ra tio nal       Ex am ple 10. Prove that :
                  num bers with re spect to ad di tion                         1   2   2    1
                                                                  So lu tion :  +    =   +
                                                                               2   3   3    2
                                                                                                                  39
                                                                                           Mathematics In Focus - 7
   34   35   36   37   38   39   40   41   42   43   44