Page 41 - SM inner class 7.cdr
P. 41

Ex am ple 14. Prove that:                            So lu tion :
                      1   æ  9   1ö   æ 1   9 ö   æ 1  1ö               2 4
                 (i)    ´ ç   +   ÷ = ç  ´    ÷ + ç  ´ ÷            (i)   ,
                      5   è 10   2 ø  è 5  10 ø   è 5  2 ø              7 7
                      1   æ 1  1ö    æ  1  1ö  æ  1  1ö                      It can be seen that
                 (ii)   ´ ç  - ÷ = ç    ´ ÷ - ç    ´ ÷
                      4   è 2  6 ø   è 4  2 ø  è 4   6 ø                             2 <  4
                                                                                     2   4
             So lu tion :                                              So,             <
                                                                                     7   7
                      1   æ  9   1ö   æ 1   9 ö   æ 1  1ö
                 (i)    ´ ç   +   ÷ = ç  ´    ÷ + ç  ´ ÷                -1  -5
                      5   è 10   2 ø  è 5  10 ø   è 5  2 ø          (ii)   ,
                                                                        6    6
                      L.H.S.                   R.H.S.                  It can be seen that
                      1   æ 9   1 ö            æ1    9  ö
                    =   ´ ç   +  ÷            = ç  ´  ÷                              - > -5
                                                                                      1
                      5   è10    ø 2           è 5  10 ø
                                                                                     -1    -5
                      1   æ 9  + ö 5             æ1   1 ö              So,              >
                    =   ´ ç     ÷              + ç  ´  ÷                              6    6
                      5   è 10  ø                è 5   ø 2
                                                                        1 - 3
                                                                   (iii)  ,
                                              9    1
                                            =   +                       4   4
                                             50   10
                                                                       It can be seen that
                      1   14   7             9  + 5  14   7
                    =   ´    =              =      =    =                            1 > -  3
                      5   10   25              50    50   25
                                                                                     1     - 3
                                                                       So,             > -
                               L.H.S. = R.H.S.
                                                                                     4      4
                   1   é 1  1ù   é 1  1ù    é 1  1ù               † Case II: Dif fer ent De nom i na tor
              (ii)   ´    -    =     ´    -    ´
                                        ú
                             ú
                                                   ú
                  4    ê 2  6 û  ê 4  2 û   ê 4  6 û              Ex am ple  16.   Put the correct sign > or <
                                 ë
                       ë
                                            ë
                                                                  between     the   following    pair   of  rational
                                                R.H.S.
                      L.H.S.
                                                                  num bers.
                     1  é 1  1ù
                      ´    -           é 1  1ù  é  1  1ù                   1 3                      9   - 41
                     4  ê ë  2  6û ú   ê 4  ´  2û ú  -  ê  4  ´  6û ú  (i)   ,                 (ii)  -  ,
                      1   é 3  - ù 1   ë        ë                          2 5                      11 121
                    =   ´  ê    ú             1   1
                      4   ë 6   û           =   -                 So lu tion  :   (i) Write other two ra       tional
                                              8   24
                                                                  numbers from the given rational numbers
                       1   2                 3  - 1               such that their de nom i na tors must be equal.
                      =  ´                  =
                                                                                          ´
                        4  6                   24                                   1    1 5     5
                                                                                       =      =
                       1                      2    1                                2    2 ´  5  10
                    =                       =   Þ
                      12                     24    12
                                                                                    3    3 ´  2  6
                                                                                       =      =
                               L.H.S. = R.H.S.                                      5    5 ´  2  10
             Comparison of Rational Numbers                       Now compare the         numerators of rational
             We have studied the comparison of integers           numbers with the same denominators.
             and fractions in our previous class. Similarly,                        5 <  6
             we can compare the rational numbers by using                           5     6
             the same rules for comparison. We shall make                           10  <  10
             it clear with examples.                                                 1   3
                                                                  Thus,                <
             † Case I: Same De nom i na tor                                          2   5
             Ex am ple 15.   Compare the following pairs of              9    - 14
                                                                            ,
             ra tio nal num bers.                                   (ii)  - 11 121
                      2 4                    -1   -5
                 (i)    ,                 (ii)   ,                By making their denominators equal
                      7 7                     6   6                                  9      9 ´ - 11)     - 99
                                                                                                (
                      1 - 3                                                              =              =
                 (iii)  ,                                                           - 11   - 11 ´ - 11)   121
                                                                                                 (
                      4   4
                                                                                                                  41
                                                                                           Mathematics In Focus - 7
   36   37   38   39   40   41   42   43   44   45   46