Page 51 - SM inner class 7.cdr
P. 51

6            -21  7   -21  3    -21  4                    - ö 9  5  - ö 9  4  - ö 9
                                                       æ
                                                                                                           æ
                                                                                          æ
                                                                                                   æ
                                a æ ö
                                             æ
                           6
                       6
                 (d) a ¸  b = ç ÷         (e) ç    ö ÷ ¸ ç  ö    æ    ö                (f) ç  ÷ ¸ ç    ÷ = ç   ÷
                                                                      ÷
                                                            ÷ = ç
                                b è ø        è 22  ø   è 22  ø   è 22  ø                  è 13  ø  è 13  ø  è 13  ø
                                                                                2
             C. Power Law                                                    10 =  10 10
                                                                                       ´
                                                                                1
                                             n
             We have studied that a    m  ´  a =  a m +  n  . Let us         10 =  10
                                                                                0
                                                          4 2
             use this law to simplify an expression (3 ) .                   10 =  1
                    )
                (3 4 2  = 3 4  ´ 3 4                                        10 - 1  =  1
                                                                                    10
                                   8
                        = 3 4  + 4  = 3  is the same as 3 4 ´  2                    1    1       1       1
                                                                            10 - 2  =  ´    =         =
             We solve another expression using the same law.                       10   10    10 10     10 2
                                                                                                 ´
                      é æ - ö 1  7 ù 2  æ - ö 1  7  æ - ö 1  7             10 -m  =           1             =  1
                        ç ê  ÷ ú = ç   ÷ ´ ç    ÷                                  10 10 ´ .... ´ 10 m  -  1)   m
                                                                                                    (
                                                                                      ´
                      ê è 2  ø  ú  è 2  ø   è 2  ø                                                           10
                              û
                      ë
                                                                                   times multiplication
                                         7  + 7     14
                                   æ - ö 1     æ - ö 1
                                 = ç   ÷     = ç   ÷              In general, it can be written as ;
                                   è 2  ø      è 2  ø                                          1
                                                                                      a - m  =
                                         7  ´ 2                                                m
                                   æ  - ö 1                                                   a
             is also the same as ç     ÷
                                   è 2  ø
                                                                  We     can    also   deduce     this   law    from
                                                                                 +
                                                                          n
             Thus, from the above examples,            we can     a  m  ´  a =  a m n   Suppose n = -  m, then we will
             deduce that the base remains the same with           get,
             a new exponent equal to the product of the two                      a  m  ´  a  - m  =  a m -  m
             exponents, that is                                   Þ              a m  ´  a - m  =  a  0
                               ) =
                           (a m n   a m ´  n  =  a mn                             m     - m
                                                                  Þ              a   ´  a   =  a
             Zero Exponent                                        Q                     a =  1
                                                                                          0
             By the quotient law, we know that anything                          m
                                                                  Divided by a  on both sides.
             divided by itself is 1 as shown below.                         m     - m
                                                                           a   ´  a      1       - m    1
                               3 2   3 ´  3                       Þ                   =      Þ  a    =
                                   =       =  1                               a m       a  m           a m
                               3 2   3 ´  3
                                                                  Thus, we have another law:
                                                     0
             This can also be written as 3   2 -  2  =  3 = 1
                                                                  Any non-zero number raised to any negative
             Similarly,                                           power is equal to its reciprocal raised to the
                                  ´
                                         ´
                                               ´
                    (-2 ) 4  (-2 ) (-2 ) (-2  ) (-2  )            opposite positive power.
                           =                          =1
                                         ´
                                  ´
                                               ´
                    (-2 ) 4  (-2 ) (-2 ) (-2  ) (-2  )                             - m   1
                                                                  i e.           a    =
                                                                   .
                                                                                        a m
             This can also be written as
                                            0
                            (-2 ) 4  - 4  =  (-2 ) =1             if  p - m  is a non-zero rational number,     then
                                                                       q
             Thus, we can define this law as:
                                                                  according to the above given law, we have :
             Any non-zero rational number with zero
                                                                                  - m           m        m
             exponent is equal to 1. Suppose “a” be any                      æ  pö      1     q     æ q ö
                                                                             ç ÷     =      =     =  ç ÷
             non-zero rational number      with exponent “0”,                è q ø      p m   p m   è  pø
             then                                                                      q m
                                     0
                                   a =  1                                            - m       m
                                                                                æ  pö     æ  q ö
             Negative Exponents                                   Thus,         ç ÷     =  ç ÷
                                                                                            pø
                                                                                è
                                                                                  q ø
                                                                                          è
             Look at the pattern given below.
                                                                                                                  51
                                                                                           Mathematics In Focus - 7
   46   47   48   49   50   51   52   53   54   55   56